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LETTER TO THE EDITOR 

Invariant density for a class of initial distributions under 
quadratic mapping 

V M Nandakumaran 
Department of Physics, University of Cochin, Cochin 682022, Kerala, India 

Received 5 August 1985 

Abstract. For the discrete-time quadratic map xl+, = 4x,( 1 -xl) the evolution equation for 
a class of non-uniform initial densities is obtained. It is shown that in the t -* a) limit all 
of them approach the invariant density for the map. 

Recently Falk (1984) has studied the evolution of a uniform probability density 
distribution towards an invariant density for a discrete-time quadratic map. He con- 
sidered an initial density ro which is uniform over the interval ( 0 , l )  and showed that 
under the quadratic map 

Xr+l= 4xr (1  - xr ) 

r(x) = I /  x[x( 1 - x)]''~ 

( 1 )  

(2) 

ro approaches the invariant density 

(Ulam and von Neumann 1947) associated with the map. That is 

lim rr(x) = r(x). 
r-rm 

In this letter we show that for the above quadratic map there exists a class of initial 
non-uniform densities all converging towards the invariant density (2) in the limit t + CO. 

We consider a non-uniform initial density of the form 

(3 1 ro(x) = ( 1 / P ( n  + 1,  n + l ) )x"( l  -x)", O < x < l  

where 

p ( n + l , n + l ) =  x"( l -x )"dx  (4) lo1 
is the p function. 

Equation ( 1 )  can be considered as defining a transformation between two random 
variables x, and x,+~.  One can then study, using standard methods (Papoulis 1965), 
how the probability distribution changes under the transformation. It can easily be 
shown that r,(x), the distribution at time t satisfies an evolution equation of the form 

r ,+~(x )  = [1/4(1 -x)"*I(rAr+)+ rf(r-)) (5) 
where 

r+ = t [  1 ( 1  - x)~'']. (6) 
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From (5) we can obtain the following set of equations: 

X" 

= (1 -x)'/222"+'p(n + 1, n + 1) (7) 

[ ( r + ( ~ ) ) " + ' / ~ +  (r_(x))"+"*] (8) 1 
[x( 1 - x)]'/222"+2p( n + 1, n + 1) r2(x) = 

For general r, 

where 

rs(x) = f[ 1 + s( 1 - x)'I2] 

with s = f l .  
Setting x = sin2 6 in (10) one obtains 

(rs,rs,. . . rs,(sin2 (sin Q)'"+' 

where 

e 1 - 1  1 77 a=-+ -(l+sj)-. 
2l-I j = ]  2 2J 

Now 

(-1)" " 2 n + l  
(sin Q)'"+'= - 22" k=O (-1)'( ) sin(2n -2k+ 1)Q 

(Gradshteyn and Ryzhik 1965). Using (14) in (10) we obtain the evolution equation 
for r,(x) 

2 n + l  (2n -2k+ I )T  
2J+1 

(-1)" 
r t (x ) " [x ( l -x ) ]1 /2~(n+1 ,  n+1p4"+ '  k = O  j = 1  

(2n-2k+1)8 ( 2 n - 2 k + l ) ~  
x sin + 2 (1 -+)I}. 

Now we can consider the limit of rt(x) as t +CO 

In obtaining (16) we have used the relation 

fi cos(;) =y, --co<X<-co. 
J = 1  

From (16) the result of Falk can be recovered by setting n = 0. When n = 1, the term 
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within the large square brackets becomes 24 so that 

lim rl(x) = l/.sr[x(l -x)]’’’. 
t+m 

The special case for n = 1 has been previously considered by the author (1985). 

respectively. For general n it becomes 24”. Therefore for all integer values of n 
When n = 2, 3, 4 . .  . the term in the large square brackets becomes 2*, 2’*, 216 . .  . 

1 
lim rl(x) = 
1-m T[X( 1 -x)]”*‘ 

In summary, we have shown that for the quadratic map (1) there is a class of initial 
distributions all evolving towards the same invariant density. This invariant density 
represents an ‘equilibrium state’ which all other ‘states’ of the form (3) approach 
asymptotically. 
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